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The  exchange  par t  o f  the  third cluster  integral  can be divided into two pa r t s :  
b3(exch-J), which arises f r om the exchange  o f  two particles,  and  b3(exch-2), 
which arises f r om the cyclic exchange  o f  all th ree  particles.  The  first few 
t e rms  o f  ba(exch-1) are ca lcula ted  by a rgu ing  tha t  b3(exch-l)  = 
-[9~ra3/(4,~3)]b2(exch)[1 + O()~/a)], where  b2(exch) is the  exchange  second  
cluster  integral ,  ~ is the  the rmal  de Broglie wave length ,  and  a is the  ha rd -  
sphere  d iameter .  The  first three  t e rms  o f  b3(exch-2) are ca lcula ted  by wri t ing 
it in pa th  integral  fo rm and  e x p a n d i n g  abou t  the  shor tes t  pa th .  

KEY W O R D S :  Third virial coefficient; asymptotic method for path 
integrals ; three-body problem. 

1 D e p a r t m e n t  o f  Physics,  Univers i ty  o f  Delaware ,  Newark ,  Delaware .  

207  

�9 1974 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part of this publica- 
tion may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, 
mechanical, photocopying, microfilming, recording, or otherwise, without written permission of the publisher. 



208 Robert Nyden Hill 

1. I N T R O D U C T I O N  A N D  RESULTS 

Ever since the exchange second virial coefficient was shown to be exponentially 
suppressed at high temperatures, 2 the exchange parts of the higher virial 
coefficients have been believed to be similarly suppressed. This has been 
recently confirmed by Bruch for the leading term of each of the exchange 
parts of the third virial coefficient (4) and for the leading term of the cyclic 
exchange part of the fourth and higher virial coefficients. (s) Bruch's rigorous 
results were obtained by using a method closely related to the one introduced 
by Lieb (2) for the exchange second virial coefficient: He expressed the ex- 
change parts in path integral form and constructed upper and lower bounds. 
The present paper extends Bruch's results for the exchange parts of the third 
virial coefficient by calculating the first four terms of the high-temperature 
expansion of ba(exch-1) and the first three terms of the high-temperature 
expansion of b3(exch-2). 

The second and third virial coefficients B and C which appear in the 
expansion 

P V  B C 
Nk-----~=l + ~ , + ~ - - ~ +  ... 

of the equation of state are given by 8 

B = - N b 2 b ?  ~ (la) 

C = N 2 ( 4 b 2 % ;  ~ - 2b3bs 3) (lb) 

where bl, b2, and b3 are cluster integrals and N is the number of particles. 
For particles of spin S 

b, = (2S + 1)), -3 (2) 

where 

a = ( 2 . ~ h 2 / m )  11~ (3) 

is the thermal de Broglie wavelength. Here h is Planck's constant h divided by 
27r, m is the mass of the gas particles, and /3 = ( k T ) - 1 ,  where k is Boltz- 

The exponential suppression of bz(exch) was first demonstrated by Larsen et aL cl) The 
correct coefficient of the leading term was first obtained by Lieb. (2) Both of these papers 
obtained their results by expressing the exchange second virial coefficient in path 
integral form and constructing upper and lower bounds. Additional terms in the high- 
temperature expansion were obtained by Hill (3) by a method which Laplace-trans- 
formed the temperature variable and used the Sommerfeld-Watson transformation. 

3 Derivations of the virial expansion (with trivial differences in the definitions of the 
virial coefficients and cluster integrals) can be found in Refs. 6 and 7. An elementary 
derivation of the formulas for the second virial coefficient, which can be readily 
extended to the third virial coefficient, is given in Appendix A of Ref. 8. 
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mann's constant and T is the temperature. The cluster integrals b2 and b3 can 
be divided into direct and exchange parts: 

b2 = (2S + 1)%2(direct) + (2S + 1)b2(exch) (4a) 

ba = (2S + 1)3b3(direct) + (2S + 1)%a(exch-1) 
+ (2S + 1)ba(exch-2) (4b) 

The upper (plus) sign is for bosons and the lower (minus) sign is for fermions. 
Only the hard-sphere potential 

I v ,  r < a 
V ( r ) =  O, r > a (5) 

(where r is the interparticle separation) will be treated here. The first few 
terms of high-temperature expansions for b2(direct), b2(exch), and b3(direct) 
follows from results already in the literatureJ 1-3~,4 The present paper will 
show that at high temperatures 

{ I1( ) 
b 3 ( e x c h - 1 )  = - 9 = ' a ~  ~ e x p  + 

+~3 + 

and 

ba(exch-2)-  167raaa316 exp(~(--~ [~[2~r2a2 + ~}/2rr2a2] ~/aT~_]f ] \  

Here/31 ~ 1.85576 is related to the roots of Airy's function, and 7'1 = 8.53 
+ 0.31 is the lowest eigenvalue of an eigenvalue problem which must be 
solved numerically [see Eq. (73)]. The results (6a) and (6b) have been obtained 
via analogs of the steepest descent method whose rigorous validity for the 
leading term has been established by Bruch's work but which here is left 
unproven. 

Section 2 lists certain basic formulas and outlines the basic idea, which is 
justified heuristically. Section 3 illustrates it in a simpler case by deriving 

4 The high-temperature expansion of b2(direct) for hard spheres may be found in Ref. 8, 
which contains references to earlier work. Numerical results for both b2(direct) and 
b2(exch) for hard spheres are given by Boyd et aL ~9~ The high-temperature expansion of 
b3(direct) for hard spheres has been investigated by JancoviciJ TM 
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known high-temperature results for b2(exch). Section 4 presents the calcula- 
tion of  ba(exch-1) and ba(exch-2). 

. BASIC IDEA 

The exchange contributions to the virial coefficients can be written in 
the form r 

b2(exch) = ~-p G6(rl, r2; r2, rl;/3) d~rl dar2 (7) 

ba(exch-1) = ~ p  [G~(rl, r~, r~; r~, r~, r~;/3) 

- a~(r~, r~; r~, r~ ; fi)Ga(ra ; ra ;/3)] darl dar2 dara (8) 

ba(exch-2) = 3-P Gg(rl, r2, ra; r2, ra, rl) darl dar2 dara (9) 

where the n-dimensional thermal Green 's  function G,~(za , z~ .... , z,~ ; zl ' ,  z2', .... 
z~'; 13) is that  solution of  the n-dimensional Bloch equation (H,~ + ~/~fi)Gn = 
0 which satisfies the initial condit ion 

G,(z~ ,  z2, . . . ,  z , ;  q ' ,  z2' , . . . ,  z,~'; O) = a(z~ - z~') 8(z2 - z2') ... 8(z~ - z~') 

and the boundary  condit ion Gn-+  0 when the primed coordinates are far 
f rom the unprimed coordinates.  Here the n-dimensional Hamil tonian H ,  
has the form 

Hn =- 2m ~-~-1 Aij - -  + g ( q ,  z2 ..... zn) j = 1 ~z~ ~zj 

where the A,j are elements of  a real, symmetric, constant  matrix all of  whose 
eigenvalues are positive. The required Green's  function G, can be written in 
the path integral form 6 

G,( z~ ,  z2 ..... z , ;  z / ,  z2', .... z ,?;/3)  

= lim (M~,-2)"u/2(det Aij)  -M/2 
M ~ o 9  

f f ~ : l ~ _ ~  [ m M ~  ~j~=~ x ... dz~ ~:~ exp 2fib2 ( A -  1)~j 
/~=I i=l /c=l i=l ' =  

l 
• (z~ ~ ' -  z~- l ' ) ( z}  k > -  z~#-*') - ~ k~=l U(z~ k', z~ k' ..... z~k')l (10) 

s Bruch's correction <*~ of a misprint is incorporated in Eq. (9). 
6 The reader unfamiliar with path integrals may find the review articles of Refs. 12 and 

13 useful. The book by Feynman and Hibbs ~ contains a chapter on path integrals in 
statistical mechanics. The path integral in (10) can be brought to the form considered 
in the above references by transforming the coordinates with a linear transformation 
which brings A,j to diagonal form with diagonal elements 1. 
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Lieb's paper (2) contains a proof  of (10) for the hard-core case with n = 6 and 
A~s the Kronecker delta. 

With the hard-core potential (5), the integrations in (10) are restricted 
to the regions where U = ~k~z V ( [ r k -  rz[) is zero. In such regions the 
M - +  oo limit of the exponential in (10) is 

exp - ~rh- 2 &j(dzddt)(dzs/dt ) dt 
0 i=l ]=1 

where the discrete variable k has been replaced by the continuous variable t. 
In the high-temperature limit A-2 is large and the dominant contribution to 
the integral in (10) comes from the neighborhood of  the maximum of this 
exponent, i.e., from the neighborhood of the minimum of 

~ ~ A~j(dz~/dt)(dzs/dt) dt 

The exchange parts b2(exch) and ba(exch-2) will be evaluated by substituting 
(10) into (7) and (9) and expanding about the maximum of the integral as in 
the ordinary saddle point method5 A rigorous demonstration that such a 
procedure leads to an asymptotic expansion of the path integral has been 
given by Schilder (16) for the case in which the maximum of the integrand occurs 
in the interior of the region so that the approximating path integrals are 
Gaussian in all variables. Unfortunately, Schilder's theorems do not apply 
to the present case because the maximum of the integrand occurs on the 
boundary of the region. However, because Lieb's ~2) and Bruch's (4) upper and 
lower bounds make it clear that most of the contribution comes from the 
neighborhood of the maximum, there can be little doubt that expanding 
about the maximum to obtain additional terms in the high-temperature 
expansion is a correct procedure. The reasonableness of this approach is 
confirmed by the fact that it reproduces previously established results for the 
higher-order terms in the high-temperature expansion of b2(exch). Neverthe- 
less, it would be very useful to have extensions of Schilder's theorems to the 
case in which the maximum of the integrand of the path integral occurs on 
the boundary; such theorems are needed to make the present work completely 
rigorous. 

Because the maximum of the integrand is on the boundary, the approxi- 
mating path integrals are not Gaussian in all variables. This difficulty will be 
overcome by recognizing that the non-Gaussian parts are the path integral 
representations of the solutions of diffusion problems which can be ade- 
quately solved by eigenfunction expansion methods in the high-temperature 
limit. 

7 See Ref. 15, Vol. I, pp. 437-443. The saddle point method for path integrals is discussed 
on pp. 88-89 of Brush's review article. (13) 
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3. E X C H A N G E  S E C O N D  VIR IAL COEFFIC IENT 

This section will derive the known result C1-3) 

b2(exch) = 4 w a a S A  - 6  exp{-~rr(zra/h) 2 - rr/31(zra/A) 2/3 

+ o[(a/;9-~J~]} (11) 
where 131 = 1.85576. An  understanding o f  the approximations which are 
adequate to obtain (11) will be very useful for  the calculation of  b3(exch-2) to 
the same order in the next section. 

The use o f  (10) in (7) yields 

b2(exch) = ~V~--,oo\-~]lim (M~au(j... f ~ M  I= daz~ ~) daz~ ~) 

x exp - r r M h  -2 ~ [(z[ k' - z[k-l ' )  2 + (z~ k) - z~k-1) 2] (12) 
I ~ = l  

where z~ ~ z~ M~, z~ ~  z~ M~, and the integration region is restricted by 
[z~ ~) - z~k) I /> a. The t ransformat ion z~ k) = Zk + �89 and z(z ~) = Zk - �89 to 
relative and center-of-mass variables produces 

M 

x exp - 2~rMt- ~ (Zk -- Z~_ 1) 2 - ~rrM1- 2 (z~ - zk_ 1) 2 
k=l k=l 

(13) 

where Zo = ZM, Zo = - z ~ ,  and the integration region is restricted by 
[zk[ /> a. The convolut ion theorem for the Fourier  t ransform can be used 
(see Appendix A) to evaluate the integrals over Z1, Z2 .... , ZM_ 1; the remain- 
ing integral over ZM just  yields a factor  o f  the volume V. This reduces (13) to 

b2(exch) = 21J2h -3 lim -.. d3z~ 

x exp -�89 -2 ( z k -  (14) 
/ ~ = 1  

The path integral (14) is most  easily handled in polar coordinates,  where 
.z~ is characterized by z~, 0h, r With Zo = --ZM fixed, orient the coordinate 
systems for  z l ,  z~,..., ZM-~ SO that  the initial point  Zo and final point  ZM lie 
on the z axis at 0 = 0 and 0 = ~r, respectively. It  is easily shown that  in these 
coordinates 

(z~ - z~_l) ~ = (z~ - z~_l) ~ + 2z~z~_~{1 - cos(0~ - 0~_1) 

+ (sin 0~ sin 0~_1)[1 - cos(~b~ - q~_~)]} (15) 

Approximat ions  to the M-fold integral in (14) will be based on the facts 
tha t  a/h and M are large. Because a >> A, m o s t  of  the contr ibut ion to the 
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integral comes from the ne ighborhood of  the shortest paths from z0 to z~.  
These paths occur for Iz01 = IZMI = a, and are characterized by zk = a, 
Ok = r~k/M, and r = r where different choices of  r specify different great- 
circle routes f rom 0 = 0 to 0 = ,r. Because M is large, it is tempting to argue 
that  1 - c o s ( 0 k -  0k-l)  can be replaced by ( O k -  0k_1)2/2 and 1 - -  
cos(r -- r by (r - r with the approximation becoming exact 
in the limit as M--> ~ .  However,  as was pointed out by Edwards and 
Gulyaev, (17~ such an approximation does not become exact as M--> ~ .  The 
individual integrations must be evaluated to order M -z [which, for example, 
requires approximating 1 - cos(0k - 0k-l)  by (Ok - 0k_1)2/2 - (t?k - 
0k_~)~/24] if the M--+ ~ limit is to be calculated correctly. This is a conse- 
quence o f  the curvature o f  the coordinate surfaces, and can be unders tood by 
noting that something of  the form 1--~M=~ [1 + M - l f ( k / M ) ]  becomes 
exp[ f l f (x )  dx] in the M - +  ~ limit. Furthermore,  1 - cos(r - r cannot  
be expanded at all when Ok is near either 0 or v and sin Ok sin 0k_ ~ is small; 
this is a consequence of  the coordinate singularities at 0 = 0 and at 0 = zr. 

An approximate treatment of  the angular integrations will be given first. 
The curvature effects can be ignored to the order o f  interest here: 
1 - cos(0 k - 0k_~) will be approximated by (Ok - 0~_~)2/2. The problems 
near 0 = 0 and 0 = ~r are most  easily avoided by using a different coordinate 
system near 0 and near rr. On the shortest path from 0 to ~-, O k = zrk/M. 
Furthermore,  most  of  the contribution to the path integral comes when Ok is 
near its value on the shortest path. Therefore the range 0 4 k ~< M of  the 
index k will be split into three pieces: 0 ~< k ~< ko, ko ~< k ~< M - ko, and 
M - ko ~< k 4 M, where k0 is 0(M213). The following approximations are 
then made:  for 0 <~ k <~ ko, sin O k_~ Ok; for ko ~< k ~< M -  ko, 1 - 
COS(r - -  r  '~  ( r  - -  r  for M - ko ~< k ~< M, sin Ok ~ zr - Ok. 
Introduct ion of  new coordinates xk, Yk via xk = Ok cos Ck and Yk = Ok sin Ck 
for  0 ~< k ~< ko and xk = ( T r -  Ok)cosCk and Yk = ( z r -  Ok)sinCk for 
M - ko < k ~< M then eliminates the coordinate  singularity problem and  
brings (14) to the form 

b2(exch) -~ 21/2A-3 M-~o~lim ~-~] ... zk 2 dzk ~-~ dx~ dYk 
k = l  

M - k  o M - J -  

• 1-~ sinOkdOkdCk I-~ dxkdykdaM 
k=kO k = M - k o + l  

• 2 
exp - - ~rMA- 2 (zk - zk- 1) 2 

ko 

+ - -  + ( Y k  - -  
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~ o 

+ zkzk_~[(O k -- Ok_l) 2 + (sin Ok sin 0k-~)(6k -- 4'k-~) 2] 
k = k o + l  

+ ~ Z~Z~-l[(Xk -- Xk-1) 2 + (Yk -- Yk-1) z] (16) 
k = M - k 0 + l  

When evaluating (16) it must be remembered that 0~ o = X~o + Y~o and 
(zr - OM_ko) 2 =- X~_ko + Y~-ko" The further approximation of extending 
the ranges of integration for xk, Yk, 0k, and q~k - 4'k-~ from - o e  to oe 
makes it possible to evaluate (16) via the methods of Appendix A. The result 
of integrating over xk, Yk, q~k, and dD.M is 

b2(exch) -~ 21/2h-a87r 2 l i r a  ~ - ~ /  j .-. = dzk 

M - k o  M - k o  

x 1--[ (ZkZk-~)ll2(sin 0ko sin OM-ko) 112 1---[ dO~ 
/~=ko+ 1 k=ko 

h; 0 - -  

x 1 
M ~  0 ~ 

+ zkzk-l(Ok Ok-l) 2 
k = k o + l  

1 

0~o 

1] 1 
+ [~=M_ko+l(ZkZk-1) - -- OM- 

AS a function of the Ok, the integrand in (17) peaks sharply about 

Ok = ,~ (z,z~_ 1)-1 (z~z~_ 1)-1 
I = 1  l 

If  the factor (sin 0ko sin Ou_ko)ll2 ~_ [0ko(Zr - 0U_ko)] II2 is evaluated at this 
peak, the O k integrations can be performed via the methods of Appendix A. 
The result yields 

b2(exch)-~4~r3h -6 lim (2~)Mf2 f f kI~_ ~ �9 .. dz / c  
M ~ o o  = 

M 

• 1 8 9  

+ ,,~ (z~zk_l) -1 ( is)  



High-Temperature Exchange Third Virial Coefficient for Hard Spheres 215 

The accuracy of the approximate result (18) is most easily assessed by 
comparing it with the exact result 

f M bz(exch) = 4~-a), -6 lim 12,~2 ] j ... ~-[ dzk 
M ~  k=l 

x M -~ (zkz~_~)-~| ( -  1)z(21 + 1) 
/ = 0  

x exp~.8rr---- ~ k=2, i (z~z~_ i) -1 

2rra)~2 (l q- �89 k= ~i (ZkZk-i)-i] -i} (19) 

which is derived in Appendix B. Clearly (18) is an adequate approximation 
to (19) for the calculation of  b2(exch) to the order indicated in (11). Un- 
fortunately, the exact methods which produced (19) do not generalize readily 
to the third virial coefficient; fortunately, the methods which produced (18) 
do generalize. 

The radial integrations will now be handled. Expand about the shortest 
path by setting z~ = a + ~:~ and expanding in powers of ~:k. The result to 
lowest order is 

b2(exch) -~ 4=aaaa -~ lim ... ds% 

x exp 2)t2 2'~2 k=i (sek _ f~_1)2 _ MZ__._ 5 ~=i 

The path integral in (20) can be evaluated by comparing it with (10), which 
shows that (20) is equivalent to 

b2(exch) -~ 4~raaaA -6 exp - - ~ T ]  G~(~:; se; r df  (21) 

where G~(~; ~:'; t) is the solution of 

( m ~:2 + ~ ~: + a~((;  ~:'; t) = 0 (22) 

which reduces to ~(~: - ~:') at t = 0 and satisfies the boundary conditions 
Gt = 0 at ~: = 0 and G1 --+ 0 as ~: -+ oo. Separation of  variables produces the 
solution 

a~(~:; ~:'; t) = ~ ~b,(~:)~,(~:')e -~,,~ (23) 
n = l  
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where K~ and ~b. are the eigenvalue and normalized eigenfunctions of 

( h 2 d 2  2~r4h2a ) 
m d~ 2 + ~ ~: ~b~(~) = ~%~b~(~) (24) 

Introduction of the new variable 

~7 = 21(3(~a/A)~13~/a - 2-2~3(~ra/A)-SISma2K,Jh 2 (25) 

brings (24) to the form of Airy's equation: 

(d2~,~/a~ 2) - ~7~b. = 0 (26) 

The Airy function Ai(~7) is the solution of (26) that tends to zero as ~/tends to 
infinity. Imposing the boundary condition ~b. = 0 at ~: = 0 then yields the 
eigenvalue condition 

Ai  [ - 2 -  2/3(zra/ )O - 813ma2~cn/hZ] = 0 

Hence if the numbers/3. are the roots of 

Ai(-21/3/3~) = 0 

ordered so that/3. + ~ > /3., the eigenvalues K. are 

Kr~ ~ 2 ~ m a  2 (27 )  

The tabulation of the roots of the Airy function given by Abramowitz and 
Stegun C18~ yields/31 = 1.85576 and/32 = 3.24460. 

It now follows from (23), (27), and the fact that the eigenfunctions 
~(~)  are normalized that 

j0 2 a~(~:; ~;/3) d~ = exp[-~r(Tra/1)2z3/~] (28) 
n = l  

For a >> 2t the first term of (28) dominates the expansion. Inserting (28) in (21) 
and taking only the first term of the sum over n yields (11). The error estimate 
in (11) follows when one notes that the change of variables (25), together with 
the fact that expectation values of ~ are of order unity, implies that ~/a is to 
be treated as being of order (2t/a) 4/a when carrying out the expansion in 
powers of ~k which led from (18) to (20). 

4. EXCHANGE T H I R D  VIRIAL COEFFICIENT 

4.1. The Coordinate System 

Let r l ,  r2, and r3 be the positions of the three particles. It is convenient 
to use as coordinates the center of mass 

R = k(rz + r2 + r3) (29) 
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the interparticle separations 

s l  - -  Ir3 - r21 ,  s2  --- Jr1 - r31,  s 3  = Jr2 - r l l  ( 3 0 )  

and a set o f  Euler angles a, fl, 7 describing the orientation o f  the triangle 
whose vertices are at r l ,  r2, r~. Edmond ' s  conventions (19) will be used to 
define the Euler angles: A rotat ion through ~ about  the z axis of  the space- 
fixed system is followed by a rotat ion through fl about  the new y axis and in 
turn by a rotat ion through 7 about  the new z axis (in the body system). I f  
x~, y~, z~ are Cartesian coordinates o f  r~ in a r ight-handed space-fixed system 
and ~:~, ~ ,  ~ are the Cartesian coordinates o f  r~ in the body  system, then 

x~ = (cos a cos fi cos 7 - sin c~ sin 7)~:~ 
- (cos c~ cos fl sin 7 + sin c~ cos 7)~7~ + (cos c~ sin fi)~ 

y~ = (sin ~ cos fl cos 7 + cos ~ sin 7)(i (31) 
- (sin c~ cos/3 sin 7 - cos ~ cos ~')~7~ + (sin a sin/3)~ 

z~ = - ( s i n / 3  cos 7)~:~ + (sin/3 sin 7)V~ + (cos/3)~ 

Nine conditions are needed to specify the coordinates ~:~, n~, (~ (i = 1, 2, 3) 
in the body  system. Three are provided by the (rotationally invariant) 
equations (30), three more by the conditions 

~ = ~2 = ~ 3 = 0  (32) 

which state that the r~, r2, r3 triangle lies in the ~:-~ plane, and two more by 
the conditions 

~:1 + so2 + ~:8 = ~  + ~ + ~ = 0 (33) 

which state that  the center o f  mass lies at the origin o f  the ~:-r/-~ system. The 
positive direction on the ~ axis is specified by requiring that a circuit f rom r~ 
to r~ to r ,  back to r~ encircles the origin o f  the ~:-r/plane in a counterclockwise 
direction. 

This statement plus the conditions (30), (32), and (33) fixes the orienta- 
tion o f  the r~, r2, ra triangle in the ~:-~-~ system up to a rotat ion about  the 

axis. I f  polar  coordinates p, ~ are introduced in the ~:-~7 plane via 

~ = p~ cos q~, ~ = p~ sin ~ (34) 

it follows f rom (30) and (32)-(34) that p~, p~, pz are given by 

p~ = �89 2 + 2s~ ~ + 2s~)  ~ (35a) 

P2 = �89 ~ - s2 ~ + 2s~2) ~ (35b) 

p~ = �89 ~ + 2s~ ~ - s~)  ~/~ (35c) 

and that the angles fizz, ~b,~, q ~  defined by 

~ = q~2 - ~b~, ,~2 = q~3 - ~2, q ~  = ~bl - ~ (36) 
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are given by 
sin ~21 = (IlI2)l/2/(3~/2p~p2) (37a) 

cos (~2~ = (s l  ~ § sz 2 - 5s3~)/(18p~Pz) (37b) 

sin ~ 2  = (IJ2)~/z/(31/Zp2P3) (37c) 

COS ~a2 = (--5s~ 2 + s2 ~ + san)/(18pzp3) (37d) 

sin q'13 = ( I~ I~)~ / (31 /~pap l )  (37e) 

cos d~a 3 = (s l  ~ - 5s2 ~ + sa~)/(18Oapl) (37f) 

where /1  a n d / 2  are the principal axis values of  the moments  of  inertia in the 
~-~ plane divided by the particle mass. Explicitly, 

I~I2 = ( - s ~  4 - s2 ~ - s34 + 2s~2s22 + 2s22sa 2 + 2sa2s~2)/12 (38) 

and 

11 + 12 = (s~ 2 + s22 + s32)/3 (39) 

One more condit ion is needed to finish specifying the orientation o f  the 
r l ,  r2, 1" 3 triangle in the ~:-~-~ plane. The usual condit ion 

~:lr/1 + ~:2~72 + ~:3r/3 = 0 (40) 

(vanishing of  the products  of  inertia) aligns the ~-r/-~ axes with the principal 
axes of  the momen t  of  inertia tensor, and implies that  

1 [ 6 ( s 3 2 - s 2 2 ) ( 3 1 1 1 2 )  lj2 ] 
q~i = 2 tan-~ 2sz 4 + 5s24 + 5s--j ~- 5s12s2 ~ - - - - ~ - - -  2s22sa 2 - 5sa2sl 2 (41) 

The traditional condit ion (40) has the disadvantage of  introducing a coor-  
dinate singularity at the equilateral triangle configuration st = s2 = s3, 
where/1 = 12 and the right-hand side of  (41) is undefined. One circuit a round 
the line s~ = s2 = sa in the s l - s 2 - s a  spaces changes the right-hand side o f  (41) 
by ~r. Furthermore,  infinitesimal changes in sl ,  s2, and sa in the ne ighborhood 
of  sl = s2 = sa can result in finite changes in the r ight-hand side of  (41); this 
makes it difficult to expand about  Sl = s2 = sa.8 

The aforementioned difficulties can be avoided by replacing the tradi- 
tional condit ion (40) by the condit ion 

41 = �89 + ~ a )  (42) 

When using (41), we adopt  the convention that  q~2~, ~a2, and 4'13, all of  which 
can be calculated f rom (36), lie between zero and ~r, so that  ~21 + q~32 + 

8 This coordinate singularity caused difficulties in the theory of the nonlinear triatomic 
molecule. ~2m The behavior of wave functions in the neighborhood of this coordinate 
singularity is discussed by Derrick. ~2~ 
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41a = 2rr. Then 41 lies between - r  r/3 and ~r/3; fur thermore,  (36) and (42) 
imply that  

42 = 42~ + r = ~Tr + �89162 + 42~) (43) 
1 4a = 4a2 + 42 = ~ r  + x ( - r  + 4a2) (44) 

The choice (42) treats the particles symmetrically, since the expressions for 
r 42, Ca go into one another  under cyclic permutat ion of  the indices 1, 2, 3 
plus a 27r/3 rotat ion.  Fur thermore,  the right-hand sides of  (42)-(44) remain 
well defined at the equilateral triangle configuration sl = s2 = sa. With the 
choice (42), permutat ion of  particles is accomplished by performing the 
rotat ion which permutes the particles when they are in the equilateral triangle 
configuration, and then making the corresponding permutat ion of  sl, s2, Sa. 

The volume element in the coordinate  system described above is 

3 3 

I--[ dar~ = daR I-[ s, ds, d~ sin/3 d5 dy (45) 
i=I ~=i 

The ranges of the internal coordinates are Ix2- ssl < sl < s2 + sa, 

0 ~<s2 ~< 0% 0 ~< sa ~< oo, 0 ~< a ~< 2rr, 0 ~</3 ~< rr, and 0 ~< y ~< 2rr. The 
finite distance between two points is 

3 

(r~ - r~') 2 = 3(R - R') 2 + Fo(sl, s2, sa;s/, sz', sa') 
i = l  

4 

+ ~ F~(sl, s2, sa; &', s2', sa')Sj(~z,/3, y; ~', r y') (46) 
] = 1  

where 

and 

3 

Fo -= ~. [(s e, - se~') 2 + (~ - rh') 2] (47a) 
i = 1  

3 

F1 -= 2 ~ (~:~' + rhrh' ) (47b) 
i = 1  

3 

/'2 - 2 ~ (~:~r/( - ~:~') (47c) 

3 

Fa = 2 ~ (se~:, ' - :?~r/,') (47d) 
i = 1  

3 

F~ = 2 ~ (s~, ' + ~7,se~ ') (47e) 
i = 1  

$1 = sin2[�89 - / 3 ' ) ]  
+ 2 cos2(�89189 ') sin2[�89 - c~' + 7 - 7')1 
+ sin/3 sin/3' sin2[�89 - ~')] 
+ 2 sin2(�89 sin2(�89 ') sin2[�89 - a' - Y + Y')] (48a) 
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$2 = -cos%~/3)  cos2(�89 ') sin(= - ~' + 7 - 7 ')  
- �89 sin/3 sin/3' sin(~ - ~')  
- sin2(�89189 ') sin(c~ - a '  - 7 + 7 ')  (48b) 

$3 ---- sin2(�89189 ') cos(~ + ~' - 7 + 7 ')  
- �89 sin t3 sin/3' cos(~ + cd) 
+ cos2(�89189 ') cos(~ + a '  + 7 - 7 ')  (48c) 

$4 = -sin2(�89189 ') sin(~ + ~' - 9' + 9'') 
+ �89 sin/3 sin/3' sin(~ + ~') 
- cos2(�89189 ') sin(~ + c~' + 9" - 7 ' )  (48d) 

The  fo rmulas  (46)-(48) fol low f r o m  (29) and  (31)-(33). The  explicit depen-  
dence  of  the F~ on s~, s2, sa, s l ' ,  sz', and  s3' can be calcula ted f r o m  (30), 
(33)-(39),  and  (42)-(44).  We  record  only  the expans ions  o f  the F~ to second 
order  a b o u t  s~ = s2 = sa = s~' = s2'  = sa '  = a tha t  will be needed later. 
Let  s~ = a(1 + e~r~), s~' = a(1 + ~cr~'). T h e n  

Fo = a%2{~[(crl - az')  2 + (or2 - or2') 2 + (% - %,)2] 
- - ~ [ ( , , ~  - , , 1 , ) ( , , ~  - ~ , )  + ( , , ~  - , , ~ , ) ( , , ~  - ,,~,) 

+ (ea - ~3')(,r~ - ch')] + 0( , )}  (49a) 

F~ = 2a2{1 + �89 + c,~' + e2 + crz' + a 3 + %' )  + -~-E2[(% + %')~ 

+ (,,2 + ,,~')~ + (,,~ + ,,~')~1 _ ~ , ~ [ ( , ~ 1  - ,,~,)~ 
+ (,,~ - ,,2,)~ + (,,~ - ,,3,)~] 

+ ~,~[(, ,~ - , ,~ ' ) ( ,~  - , ,2') + (,,~ - ,,~')(,,~ - ,,~') 
+ (c~a - aa')(a~ - ~h')] + O(ea)} (49b) 

F~ = ~ V - ~ a ~ , 2 [ ( - , , ~  ' + "~"1' - ~ '  + ~ '  - ~ '  + ~ , '~ ' )  + 0 ( ~ ) ]  
(49c) 

r a  = aZ ,{ -} ( a~  + a~') + 2(a 2 + a2' + aa + aa') + e [ - �89  + az') z 
+ ~ ( ,~  + ,~ ' )2  + +(,,~ + ,~ ' )~  + ~ ( ,~  - ,,~,)~ _ -~( , ,~  - ,,~,)~ 
- - ~ - ( , , ~  - , , ~ , ) 2  + ~ ( , , 1  - , , ~ , ) ( , ~  - , ~ ,  + ,~3 - ,~ , )  

- -~(az - %')(aa - ~ ' ) ]  + O(e~)} (49d) 

r ~  = ~ / S a ~ , ( ~ ( , , ~  + , , ~ '  - , ,~  - , ~ ' )  + , [ ~ ( , , ~  + , , ~ ' ) ~  - ~ ( , ~  + -~ ' )~ 
1 ( _ _  - -~-~-,~ ,,2')2 + -?e(,~3 - ,,~')~ 

_ 2(~q _ ,r,')(,rz - ,r2' - ,r a + ~ra')] + O(eZ)} (49e) 

4 .2 .  C a l c u l a t i o n  o f  b 3 ( e x c h - 1 )  

This  section will derive the results (6a) for  ba(exch-1) by showing  tha t  

b3(exch-1) = - [9~ra3/ (4 ,~3)]b2(exch)[1  + O ( 1 / a ) ]  (50) 

Divide the region o f  in tegra t ion in Eq. (8) into two regions,  I and  II.  In  I at  
least one  m e m b e r  o f  the pair  s l ,  s2 is less than  a ;  in I I  b o t h  sl and  s2 are 
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greater than a. In region I the integrand G9 - G6G3 of(8)  reduces to - G6G3. 
Furthermore,  the integrand G9 - G6G3 of  (8) fails exponentially to zero in 
region I I  over a distance o f  order A, so that  most  of  the contr ibut ion to (8) f rom 
region II  comes when either sl - a or s2 - a or both are o f  order  A. Thus the 
contr ibut ion to the integral in (8) f rom region II  is down by a factor  o f  A/a 
compared  to the contr ibution from region I. 9 Using the volume element (45) 
in (8) now yields 

b3(exch-1) = - [ 1/(2 V)] .f, G6(h,  r2; r2, r~ ;/3)G3(r3; r3; 3) daR 

3 

x ~ s~ ds, d~ sin fi dfi d7 [1 + O(A/a)] (51) 
i = l  

N o w  G6(rl, r2; r2, rl;/3) depends only on sa = trl - r2], and Ga(ra; ra;/3) = 
h -3. Furthermore,  if A(sa) is defined by 

A(sa) = fl sx ds~ s2 ds2 (52) 

then it is easy to show that  for a ~< s3 ~< 2a 

= sl s2 ds2 dsl 

= -(1/24)sa  4 + lsa2a2 + 2saaa (53) 

All o f  the integrations in (51) except the one over s3 can now be performed to 
yield 

ba(exch-1) = -4"rr2h -3 G6(rl, r2; r2, rl;/3) 

x s3A(s3)ds~[1 + O(Va)] (54) 

The behavior  of  G6 can be determined by noting that, at high temperature, 

G~ ~ exp[-�89 distance from r l ,  r2 to r2, rl) 2] 

This shortest distance is a{rr + 2[(tan 0) - 0]} where 0 = cos-l(a/sa) .  An 
elementary calculation now shows that for p8 - a << a 

G6 ~ e x p { -  �89 2 [1 + ~rr- l(2sa - 2a)a/~a- 3~21 

As a consequence of  this exponential falloff, the factor  s3A(s3) in (54) can be 
replaced by aA(a) with an error o f  order (,~/a) 4/a. Hence 

b3(exch-1) %'2h -3~5 ~'~ = - ~  . j~ G~(r~,r2;r2,rl;/3)ds3[1 + O(h/a)] (55) 

9 This kind of observation is the basis of the calculation of the first quantum corrections 
to all of the direct higher virial coefficients for hard spheres by Jancovici. (22~ 
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The same kind of  approximat ion can be used in (7) to show that  

bKexch) = 2~a ~ Gdr~, r~; rz, rz ;/~) dsa{1 + O[(h/a)~/al (56) 
~g 

Compar ison of  (55) and (56) now yields (50); the result (6a) for ba(exch-l) 
then follows f rom using the known result (l-a) 

( [l/ ,ra'l  z /~ra\Zr 
b~(exch) = 4rr~a~A -s  exp~. -~r [~-~-~  + filt--~- ) 

in (50). 

4.3. Ca lcu la t ion  o f  b3(exch-2) 

The calculation of  ba(exch-2) is similar to the calculation o f  b2(exch) in 
Section 3. The use of  (10) in (9) yields 

f ~ ( "-11- ba(exch-2) = \ -~1 j ... ~ 
,s i=1 

X e x p l  -- T/MA- 2 ~k=l i=l~-~ [l'~k) -- r~k- 1)] 2} (58) 

where r~ ~ = "a'(M), "s'(m = r(M)l , r (~ = r(2 M~, and the integration region is restricted 
by I t?  ~ - r~ k~] ) a, Ir(2 k~ - r~ k~] >/ a, and Ir(a k~ - r?~l >/ a. 

The path integral (58) is most  easily handled in the coordinates de- 
scribed in Section 4.1. It  is convenient  to define the Euler angles c~ (k~, fi(k~, ~,(k) 
for k = 1, 2 ..... M relative to those for k = 0. With this definition e~ (~ = 
fi(o) =v(o) = O, c~ (M) +y(M) = 27r/3, and a M -  YM = f3M = 0 -  Also, s(1 ~ = 
s(a u), s~ ~ = s(x u), and s(3 ~ = s~ M). The integration region is restricted by s} k) ) a. 

The shortest path f rom the initial point r(~ ~ r(2 ~ r~ ~ to the final point 
r~ M), r~ M), r(3 u) is one on which s~ k~ = a, ak + ya. = 27rk/(3M),/3 k = 0, and ah: - 
yk is arbitrary (because the distance is independent of  a~ - )'k when/3k = 0). 
In order to calculate b3(exch-2) to the order indicated in (6b), it is sufficient to 
expand about  this shortest path and approximate the distance in the exponent 
of  (58) by 

8 
_ 

s 
3 

i=J- 
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- l [ ( s l  ~' - s I~-1,)(4~ _ 4 ~ - . )  + ( 4  '~ _ s~-~9(s~k~ _ s ~ - . )  

+ (4 '~ _ s~ , , -~) ( s i~  _ s;~-191 

4rr2a a 4rr2a 2 4rra 2 
+ 27M=a2 ~ (s~ k~ + s} k- l '  - 2a) + --if-M-- g + ~ \ a  (k~ - a(k-~)+r  (k~ 

i = l  

3 M !  

+ ~a=[(y~9= + ( 5 ~ -  ~)= _ 2 5 ~ 5 ~ -  1~ cos(~(~ _ ~ -  ~)] 

~r= a= [(/3<~)) = + (/3 <=- ~))=] (59) 
9M = 

The approximation (59) follows readily from (46) by neglecting the terms 
F~S~ + FaSa + F~S~ and using (482), (492), and (49b). To the same order, 
the volume element (45) can be approximated by 

3 3 

1--[ darff) = aa ]-~ s}~) ds}~) fl~) dfi<~' d ~ )  dY~) (60) 
i = l  i = 1  

Because/3 <~> and a <~) enter the approximations (59) and (60) like polar co- 
ordinates, it is convenient to make a change of  variables to 

x <~) = fi<~) cos a <~), y<~) = /3  <~) sin a <~), z (~) = ~<~ + y~) - (2wk /3M)  
(61) 

The use of  (59)-(61) in (58) produces 

4r7a 2 . 
8wl 'cmI1'22'a exp ( - - - ~ 7 - )  { I + O[ (~-)Zm]) (62) ba(exch-2) = - - T  

where 

= M~OO "'" dZR (~) exp - - -  Io~ lim I A 2 ]  ~=1 

/1 = lira ... dz ~k~ exp - - -  

/2 = M--=lim \-~-~-] "'" I - I  dx<=' exp - - - -  
k = l  

2~raaZ M - 1 l 
+ 9Ma----~ ~ (x~O = 

k = l  

3~MA ~ ~=1 ~ (R~k ' -  R~-1')2] 

(63a) 

rrMa2 k=l ( z ( ~ ' -  z(k-~)21 (63b) 

~rma 2 
22t2 ~= l 

(63c) 

. . . .  expt- A 5 
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_ s}~- 1))2 _ 2(s~k) _ s~k- 1))(s~k) _ s~k- 1)) _ 2(s~) _ s~k- 1)(s~) _ s~ - l ) )  

- 2 ( s ~ ) - s 3 k - 1 ) ) ( s ~ ) - s ~ - l ) ) ]  27M,V8~r3a ~= 1 ~ ~= 1 ( s}k) -  a ) )  (636) 

The factor  of  87r 2 in (62) comes f rom integrating out  over a(o), fi(o), and ~,(o); 
the factor  o f  1/V in (58) has been cancelled by the integral over R <~ Because 
the exponentials  decrease so rapidly for  M large, the variables R (k), x (~), z (k) 
in (63a)-(63c) can be integrated f rom - ~  to ~ and the variables s} k) in (63d) 
f rom a to ~ .  

Also, R r176 R <M), x (~ = x (M) = z (~ = z (M) 0, and s~ ~ ~(M) S~O) 
S~ M), S~~ S~ M). The error  est imate in (62) is arrived at by the following 
assignments of  orders of  magni tude  in the regions in which significant 
contr ibut ions occur:  

c~ (~) + ~(~) = (27rk /3M) + O(~/a),  a (~) = O(1), /3 (~) = O(A/a) 
s} ~) - s} ~-~) = O[a(;Va)~/~], s} ~) = a{1 + O[(~/a)~/~]} 

The integrals Io~ and /1  can be evaluated with the aid of  the convolut ion 
theorem for  the Fourier  t ransform (see Appendix  A); the results are 

Iota = (3/A2) z/~ (64) 
and 

I~ = a/A (65) 

/2 can be evaluated with the aid of  a fo rmula  given in the review article by 
Gel ' f and  and Yaglom~~ the result is 

12 = (47r~/Z7)~/~(a/A) (66) 

The pa th  integral /3 can be evaluated by compar ing  (63d) with (10), 
which shows that  

13 = f Ga(s~, s~, sz; sz ,  sz ,  s~ ; i~) ds~ dsz dsa) (67) 

where G~(sx, s~, s , ;  sx', sz' ,  s~' ; t)  is that  solution of  

[H~(sx, sz ,  s~) + (~/�9 s~, sz; s~', sz', s~'; t) = 0 (68) 

which reduces to 3(s~ - s / )  8(s~ - s~') 3(so - s~') at t = 0 and satisfies the 
boundary  condit ions G~ = 0 at s~ = a, at sz = a, and at sa = a and Ga -+  0 
as s~, s~, and/or  s~ -+  oo. Here /43  is the opera tor  

= a m  2 + + + + 

~o Gel'fand and Yaglom [Ref. 12, Eq. (1.31)]. Gel'land and Yaglom's t has the value 
~r~a~/(91~), their t has the value 2,V/(~-a~), and their X has the value zero. 
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a~s~] 167r~h2a 
+ + 27m~ 4 (s~ + s2 + sa - 3a) (69) 

Separation of variables produces the solution 

Ga(sl, s2, sa; sl ' ,  s2', Sa'; t) 

= ~b.(s,, s2, sa)~b.(sl', s2 ,  Sa')e-~.t (70) 
n = l  

where ~c~ and ~b. are the eigenvalues and normalized eigenfunctions of 

Ha(s , ,  s2, sa)r s2, sa) = K~b.(sl, s2, sa) (71) 

The substitutions 

and 
& = a[1 + S(2rr2a2/A2)-21aa~] (72a) 

(72b) ~. = (2~r/9)(2rr2a2/a2)lzafl- l y .  

bring (24) to the form 

{ i ( 0 2  02 a 2 )  02 02 ~2 ] 
- 2 

(73) 

The eigenvalue problem (73) must be solved numerically. A detailed 
calculation, presented in Appendix C, shows that the eigenfunction r 
belonging to the lowest eigenvalue 71 is symmetric in a, ,  o2, aa and produces 
the bounds 8.23232 < y, < 8.83750. It now follows from (67), (70), (72b), 
and the fact that r is normalized and symmetric that 

I a = exp[--(2rr/9)(2rr2a2/a2)lmyl] 
x (1 + O{exp[-(2rr/9)(2~r2a2/A=)l/a(72 - 70]}) (74) 

The result (6b) for ba(exch-2) now follows from using (64)-(66) and (74) 
in (62). 

A P P E N D I X  A. EVALUATION OF G A U S S I A N  PATH INTEGRALS 
VIA THE C O N V O L U T I O N  T H E O R E M  FOR 
THE FOURIER T R A N S F O R M  

Consider an integral of the form 

Iz(xo, xz) = "'" f~(xk -- x ~ - l )  dx~ (A.1) 
- m  m k = l  h : = l  
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The convolut ion (faltung) theorem for  the Fourier  t ransform (Ref. 15, pp. 
464-465) reduces this to the single integral 

where 

Iz(xo, xl) = (1/27r) F~(y)e~(~o-~,)dy 
k = l  

(A.2) 

F Fk(y) ~ e-~X~f~(x) dx (A.3) 
oo 

is the Fourier  t ransform of f~ .  I f  

f~(x) = a~ I2 exp(-Trakx  2) (A.4) 
then 

F~(y) = exp[-y2/(4~mk)] (A.5) 

I f  (A.5) is inserted in (A.2), the integrat ion is easily per formed to yield 

Iz(xo, xz) = ~ -  1 exp - 7r(Xo - xz) 2 c~- 1 (A.6) 
k = l  

A P P E N D I X  B. EXACT EVALUATION OF THE A N G U L A R  
INTEGRALS IN b2(exch) 

I f  the expansion 11 

expfMrrh-2zkzk_ 1[cos Ok cos Ok- 1 

+ sin Ok sin 0h- 1 cos(r -- Ck- 1)]} 

[ 2A2 ~ l l z  @ I  [Mrrzkzk-1] 
= 2~r - -  Z,  z+(l/2)/" ~ ! 

l 

x i) 
m= --l 

is used in the result of  inserting (15) into (14), the angular  integrations can 
be pe r fo rmed  by exploiting the o r thonormal i ty  of  the spherical harmonics  
Yl.m. The result is 

�9 .. z~ 2 dz~ dr2 M b2(exch) = 21/2A -3 l i r a  
/ c= l  

x exp - - p  
l=O 

11 See Ref. 23. The quoted expansion follows from the expansion for exp(Tp cos 4') on 
p. 108 and the addition theorem for the spherical harmonics. 
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z/2 / MTrz~zk x ~ [  [2[ / 2A2 1) I~+~ ]5 -1) ]  
~= , [ \ Mz~z~_ 

l 

X ~,, Yl,m(O0, ~O) Yt,m(OM, ~M) (B.1) 
m =  - - [  

Because the argument of the modified Bessel function It + o~2) is always large, 
it can be replaced by the asymptotic expansion (Ref. 23, p. 139) 

/,+agm(oj) = (2~r~o)_ 1/2e~,[1 I(I+271) + O(oJ_ 2)] 

Furthermore, since 0o = 0 and 0M = rr, 

l 

Yl,m(Oo, ~o) Yl,ra(OM, ~m) = ( - -  1) '(2l + 1)/(4~r) 
m= - l  

Using these in (B.1) yields 

b2(exch) = 21/2A -a lim -.. dz~ 

+ ( - l y ( 2 / +  1)exp - - ~  (zk - zk-1) 2 
/ = 0  

2rrM (z~z~_ 1) -1 (B.2) 
} c = 1  

which is still exact in the M ---> oo limit. Equation (B.2) can be recognized as 
the result which would be obtained by decomposing the Green's function for 
the interparticle coordinate in spherical harmonics and then writing a path 
integral for the radial Green's function. 

The sum over I in (B.2) is slowly convergent for A << a. It can be trans- 
formed into a more rapidly convergent series by using one of the transforma- 
tion formulas for the elliptic theta functions (Ref. 23, pp. 371-373): 

oo 

E (-1)2( 2l + 1 ) e x p [ - l ( l  + 1)~] 
2 = 0  

= exp ~ ( -  l y ( 2 / +  1) exp (B.3) 
l = O  (T 

The formula (B.3), which also arises in the quantum statistics of the rigid 
rotator, can be readily established with the aid of Poisson's summation 
formula (Ref. 15, pp. 466-467). The use of (B.3) in (B.2) yields the exact 
result (19). 
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A P P E N D I X  

and 

Robert Nyden Hill 

C. B O U N D S  TO THE E I G E N V A L U E S  y .  

Define operators 

H ( b ) -  - b  + ~ + + ~ + % + ~a (c.0 

is nonnegative. Hence the nth eigenvalue of  H(3/2) is a lower bound  *a to the 
nth eigenvalue of  H(2)  + H ' .  The first two eigenvalues yl and y2 therefore 
lie in the intervals (3/2)l/a(3ql) ~< y~ <~ 21m(3ql) and (3/2)~m(2ql + q2) <~ 

12 A proof of the fact that the Rayleigh-Ritz method gives upper bounds to the higher 
eigenvalues as well as the lowest eigenvalue can be found in Ref. 24, pp. 75 78. 

la This can be easily established by using the minimax characterization of the eigenvalues 
See Ref. 24, pp. 70-71 and Chapter 12. 

02 92 92 
H '  -- aal ~% &r2 ~% 8aa Oal (C.2) 

The eigenvalue problem (73) then takes the form 

[H(2) + n ' ] ~  = r , r  (C.3) 

The eigenvalues and (unsymmetrized and unnormalized) eigenfunctions o f  
the problem 

H(b)r %,  aa) = e, . . . .  q~, . . . .  (at ,  a2, ~a) (C.4) 

are easily found by separation o f  variables; they are 

c, . . . .  = b~la(q, + q= + q.) (C.5) 

and 
(~ . . . .  = Ai (b-1 /%l  - q~) A i (b -  lm~2 - qm) A i ( b -  ii%a - q,~) (C.6) 

where q~ is the lth root  of  A i ( - q 3  --- 0 with Ai(z) the Airy function. 
It  can be easily shown that  

((O,,m,nlH'lq~v,m,n, } = 0 (C.7) 

if I = l '  and m = m'  and/or  if m = m'  and n = n' and/or  if n = n' and l = I ' .  
The Rayle igh-Ri tz  variational method with a linear combinat ion  of  q~,,~,~, 
~b2,~,1, q~,,2,~, and q~l,~,= as variational trial functions then shows that  the 
first eigenvalue of  H(2)  is an upper  bound  to the first eigenvalue of  H(2)  + H '  
and the second eigenvalue o f  H(2)  is an upper bound  to the second eigenvalue 
o f  H(2)  + H ' .  12 With the boundary  condit ion used, the operator  
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9'2 ~< 21/3(2ql + q2). The tabulation of the roots of  the Airy function given by 
Abramowitz and Stegun (18~ then yields 

8.02939 < 9"1 < 8.83750 (C.8) 
10.00324 < 9'2 < 11.04216 

The lower bound to yl given in (C.8) can be improved by making use of  
the Temple formula (2s~ (also see Ref. 24, p. 214), which [with H = H(2) + 
H ' ]  yields 

d, lHlr i 
9'* > <r162 / [ ' <t7i77 J ] 

(C.9) 

where Y* is some number which satisfies (r162162 ~< 9'* < 72. With the 
choice r = r it can be shown that (~blalr q,1,1 and 

, 9 - 1 / 3 , 2  Numerical evaluation of the right-hand = + > ,<1. 
side of  (C.9) with this r and 9'* = 10.00324 yields 

8.23232 < 9'1 < 8.83750 (C.10) 

Tighter bounds on 9't can be obtained by improving the variational trial 
function r 

The symmetry of the eigenfunction ~bl belonging to 9'1 can be argued as 
follows. Clearly r is symmetric. The symmetric perturbation H '  cannot 
bring in any admixture of  an asymmetric state. Because the lower bound to 
9'2 lies above the upper bound to 9'1, an asymmetric lowest state cannot be 
produced by level crossing as H '  is turned on. Thus r is symmetric, 
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